Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: a dual effect of the drug.
نویسندگان
چکیده
Similar to ischemic preconditioning, diazoxide was documented to elicit beneficial bioenergetic consequences linked to cardioprotection. Inhibition of ATPase activity of mitochondrial F(0)F(1) ATP synthase may have a role in such effect and may involve the natural inhibitor protein IF(1). We recently documented, using purified enzyme and isolated mitochondrial membranes from beef heart, that diazoxide interacts with the F(1) sector of F(0)F(1) ATP synthase by promoting IF(1) binding and reversibly inhibiting ATP hydrolysis. Here we investigated the effects of diazoxide on the enzyme in cultured myoblasts. Specifically, embryonic heart-derived H9c2 cells were exposed to diazoxide and mitochondrial ATPase was assayed in conditions maintaining steady-state IF(1) binding (basal ATPase activity) or detaching bound IF(1) at alkaline pH. Mitochondrial transmembrane potential and uncoupling were also investigated, as well as ATP synthesis flux and ATP content. Diazoxide at a cardioprotective concentration (40 muM cell-associated concentration) transiently downmodulated basal ATPase activity, concomitant with mild mitochondria uncoupling and depolarization, without affecting ATP synthesis and ATP content. Alkaline stripping of IF(1) from F(0)F(1) ATP synthase was less in diazoxide-treated than in untreated cells. Pretreatment with glibenclamide prevented, together with mitochondria depolarization, inhibition of ATPase activity under basal but not under IF(1)-stripping conditions, indicating that diazoxide alters alkaline IF(1) release. Diazoxide inhibition of ATPase activity in IF(1)-stripping conditions was observed even when mitochondrial transmembrane potential was reduced by FCCP. The results suggest that diazoxide in a model of normoxic intact cells directly promotes binding of inhibitor protein IF(1) to F(0)F(1) ATP synthase and enhances IF(1) binding indirectly by mildly uncoupling and depolarizing mitochondria.
منابع مشابه
Neuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملEffect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملبررسی اثرات داروی دیازوکساید بر دهلیز مجزای موش صحرایی
Background: It is generally accepted that the selective adenosine triphosphate-dependent potassium channel openers (KATP openers) have a dramatic role in the treatment of some cardiovascular disorders. The aim of this study was to investigate the effects of diazoxide, a potent ATP-related potassium channel opener, on spontaneously beating isolated rat atria to achieve more accurate approaches t...
متن کاملThe Effect of Diazoxide on Ultrastructural Changes Following Ischemia-Reperfusion Injury of Rat Brain
A B S T R A C T Introduction: Even today there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied the effect of mitochondrial KATP channel regulators on neuronal ultrastructure after ischemia reperfusion in the rat. Materials & Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusion with...
متن کاملATP-sensitive K+ channels in renal mitochondria.
Isolated kidney mitochondria swell when incubated in hyposmotic solutions containing K+ salts in a manner inhibited by ATP, ADP, 5-hydroxydecanoate, and glibenclamide and stimulated by GTP and diazoxide. These results suggest the existence of ATP-sensitive K+ channels in these mitochondria, similar to those previously described in heart, liver, and brain. Renal mitochondrial ATP-sensitive K+ up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007